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Abstract: The paper introduces a way how scattered context grammars can be build and used for
recognizing a register realignment. The register realignment is a method of adjusting an executable
file on a binary level. Scattered context grammar is based on human analysis of code. Such an
analysis includes exploration of bytes affected by realignment and finding new valid values for them.
The created grammar has LL property – an ability of parsing this type of grammar.
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1 INTRODUCTION

Register realignment is basic technique of binary obfuscation and it is usually executed by a meta-
morphic engine. It is exploited by e.g. malware writers to fool and discard pattern matching, what is
one of the main methods for searching the malware and it is used by majority of anti-virus software.
This adjustment has to preserve a context, therefore a formal model, which is able to describe con-
text languages, could be appropriate for describing it. LL scattered context grammars were chosen,
because they can generate context languages and we can build parser for them [1].

Section 2 introduces primary knowledge about formal languages. In Section 3, we describe closely
the register realignment. Its purpose and a reason why it is useful to recognize it is shown in Section
4. The idea for solving the problem is also part of this section. The following Section 5 presents an
example and, finally, there is a conclusion.

2 PRELIMINARIES AND DEFINITIONS

It is expected that reader is familiar with formal models and with formal language theory [2].

Definition 1 (Context Free Grammars) A context free grammar (CFG) is a quadruple G=(N,T,P,S),
where N is a finite set of nonterminals, T is a finite set of terminals, S ∈ N is the starting nonteminal,
and P is a finite set of rules of the form A→ w, where A ∈ N and w ∈ (N∪T )∗.

Definition 2 (Scattered Context Grammars) A scattered context grammar (SCG) is a quadruple
G = (N,T,P,S), where N is a finite set of nonterminals, T is a finite set of terminals, S ∈ N is the
starting nonterminal, and P is a finite set of rules of the form (A1,A2, . . . ,An)→ (w1,w2, . . . ,wn),
for some n ≥ 1, where Ai ∈ N and wi ∈ (N ∪ T )∗. If (A1,A2, . . . ,An)→ (x1,x2, . . . ,xn) ∈ P, u =
u1A1u2 . . .unAnun+1, and v = u1x1u2 . . .unxnun+1, where ui ∈ (N ∪T )∗ for 1 ≤ i ≤ n, then u⇒ v is a
derivation step.

Definition 3 (LL SCG) Let G1 = (N,T,P,S) be a SCG. G1 is LL SCG if G2 = (N,T,P[1],S) is LL
CFG. (Definition of LL CFG is not listed here due to space restrictions and it could be found in [2])

Definition 4 (Basic Block) A basic block is a portion of the binary code that has one entry point,



meaning no code within it is the destination of a jump instruction anywhere in the program, and it
has one exit point, meaning only the last instruction can cause the program to begin executing code
in a different basic block. Under these circumstances, whenever the first instruction in a basic block
is executed, the rest of the instructions are necessarily executed exactly once, in order [4].

3 REGISTER REALIGNMENT

It is simple method, which is a part of every advanced metamorphic engine, Principle of the method
is to exchange the registers in code without corrupting an original algorithm [5]. The result is that
the instructions are still the same, but they work with other registers. In another words, a different
admissible permutation of used registers is created. This update is reflected in binary code, where the
parts of opcodes, which define the place of source or destination, is changed.

mov eax, ebx

xor ecx, ecx

test eax, ecx

mov ecx, edx

xor eax, eax

test ecx, eax

The important note is that there are some restrictions. It definitely would not be a good idea to
exchange the register esp, because it will cause corruption of stack and, most probably, a crash
of application. The number of available registers for realignment is dependent on an architecture.
On the architecture i386, there are 8 base registers, but we can effectively work only with 7 due to
excluding the esp register. We know architectures with higher number of registers as ARM or MIPS,
therefore there is much more available permutations and the register realignment can create much
more combinations of the binary code.

4 IDEA

Take into account the following example: function min, which takes two integer values as arguments
and returns the smaller value. Consider the function is also the basic block.

0: 55 push %ebp
1: 89 e5 mov %esp,%ebp
3: 8b 45 08 mov 0x8(%ebp),%eax
6: 39 45 0c cmp %eax,0xc(%ebp)
9: 0f 4e 45 0c cmovle 0xc(%ebp),%eax
d: 89 ec mov %ebp,%esp
f: 5d pop %ebp

10: c3 ret

Figure 1: Original code

After running the metamorphic engine on the code from figure 1, we could obtain the code shown on
figure 2.

The patterns for functions are (the different bytes are marked with bold font):

1. 5589e58b450839450c0f4e450c89ec5dc3

2. 5289e28b420839420c0f4e420c89d45ac3



0: 52 push %edx
1: 89 e2 mov %esp,%edx
3: 8b 42 08 mov 0x8(%edx),%eax
6: 39 42 0c cmp %eax,0xc(%edx)
9: 0f 4e 42 0c cmovle 0xc(%edx),%eax
d: 89 d4 mov %edx,%esp
f: 5a pop %edx

10: c3 ret

Figure 2: Obfuscated code

The anti-virus programs use regular expressions to solve that problem. The idea of that solution is to
exchange the variant byte by a symbol, which means that this byte is not taken into account by a pat-
tern matching algorithm. Then the pattern looks like this: *89*8b*0839*0c0f4e*0c89**c3.

We see that this solution could give false positives, which means that it marks unrelated code as a
correct result of the pattern matching. This is caused by a very free condition of the regular expression.
The better results can be reached by studing the context dependency of changed bytes.

Scattered context grammars seem to be suitable formal model for describing this kind of problem. A
challenge is to create this grammar automatically. In this paper, we will study a human creation of
the grammar, which will be able to recognize the register realignment.

We assume that no other method for adjusting a binary code is used, so no instruction can be added
or substituted. According to this assumption, the register realignment can be done only on a level of
basic blocks. If we enabled the instruction substitution, the register realignment could be made with
context on more blocks. We can demonstrate it on our code from figure 1. The result is returned in
register eax. If we exchange eax and ecx, the result will be stored in the register ecx. In some
cases, this could be solved by register realignment in a callee code, but this is not possible in every
case and also the problem is a function call by register value (call eax), which cannot be generally
solved by a static analysis of metamorphic engine.

Before building the grammar, we have to analyze the code and find the registers, which can be ex-
changed, these registers will be stored in the list A. The registers, which can take place instead of the
original registers, will be put into the sets Bi, i = 1, . . . ,n, where n = length(A). An arbitrary register
from set Bi can be used instead of register on the position i of the list A. If i > 1 then there is another
problem. The selection of register from set Bi can influence the selection from set B j (i <> j), what
has to be handled by the grammar.

In this paper we work with i386 architecture, therefore each set B contains a subset of eax, ebx,
ebp, ecx, edx, esi, and edi registers, because every register which is used in specific basic block
and is not in the list A is not included. Register esp is not included due to its special purpose. The
definition of the list A is a bit more complicated. There is also rule that esp cannot be an item of the
list. Moreover we have to be careful with eax, because it is used for returning a result value to callee.
The instructions with implicit register as operand or as destination are the last trap. Good example is
instruction ADD with opcode 05, which takes immediate value as operand, adds it to value in eax or
ax (according to size of operand) and finally, stores the new value in the same register.

It is important to say that every occurrence of register from list A has to be exchanged by the same
register from assigned set B. This condition dictates minimal length of rule in the grammar. If we
have only one item in the list A, the minimal length is equal to the maximal length, because we do not
need to handle anything except the exchange of one register in all occurrences. If we have more items



in list A, we have to handle conflicts, which can be raised up by exchanging registers. This special
handling causes that the rules are longer.

We have only one condition on grammar. It has to be in LL form, this condition is given by need of
possibility to parse the code [1]. According to the definition we have to satisfy LL condition for the
first part of each SCG rule.

Now, we can make next step and create grammar for the code from figure 1. In the code, the registers
esp, ebp and eax are used. Now, we have to create list A from these registers, we exclude esp due
to facts presented in the previous section, also the register eax is used for returning the result, so it is
excluded from this set. Only ebp is the item in the list A.

The next step is creation of set B1 for the item from list A. We start from base eax, ebx, ebp, ecx,
edx, esi, and edi. We exclude eax, because this register is used in this basic block and eax/∈ A.
B1 = {ebx,ebp,ecx,edx,esi,edi}. The grammar will have 6+1 rules (1 starting rule and one
rule for one exchange of register ebp from list A by one register from set B1). There are 7 variant
bytes, therefore the exchange is performed on 7 positions, what specifies the length of each rule to 7
(except starting rule).

5 EXAMPLE

The grammar is working directly on the binary code. For each variant byte we have to find a code,
which will be on that position for specific register exchange. This code is obtained by examining the
affected instruction and finding out new opcode for the instruction with changed register.

We will show the finding opcodes for one realignment. We take register edx and find new opcodes
for the instructions. First affected instruction is push %ebp with opcode 55, after adjustment to
push %edx the opcode is 52, we gain the first variant byte with value 52 for edx, we can mark
this variant byte as X1. The second obfuscated instruction is mov %esp,%ebp with opcode 89 e5,
after realignment to mov %esp,%edx the opcode is 89 e2. We have the second variant byte X2
with value e2. The next updated instruction is mov 0x8(%ebp),%eax, the opcode is changed
from 8b 45 08 to 8b 42 08, it gives us X3 with value 42. By the same way we get the variant
byte X4 from instruction cmp %eax,0xc(%edx) with value 42, and variant bytes X5, X6, and X7
from instructions cmovle 0xc(%edx),%eax, mov %edx,%esp, and pop %edx.

We create the patterns for each possible combination, which can be established by the metamorphic
engine. The register, which is used for the given pattern, is listed on the end of pattern in brackets.
Finally, there is pattern, where we substitute the variant bytes by nonterminal symbol. This pattern
will be used for starting rule of the grammar.

• 5589e58b450839450c0f4e450c89ec5dc3 (ebp)

• 5389e38b430839430c0f4e430c89dc5bc3 (ebx)

• 5189e18b410839410c0f4e410c89cc59c3 (ecx)

• 5289e28b420839420c0f4e420c89d45ac3 (edx)

• 5689e68b460839460c0f4e460c89f45ec3 (esi)

• 5789e78b470839470c0f4e470c89fc5fc3 (edi)

. X189X28bX30839X40c0f4eX50c89X6X7c3

Now we can create LL SCG G, G=(N,T,P,S), N = {S,X1,X2,X3,X4,X5,X6,X7}, T = {00,01,02, . . . ,
f d, f e, f f}, P = {



p1 : S→X189X28bX30839X40c0f4eX540c894X6X7c3
p2 : (X1,X2,X3,X4,X5,X6,X7)→ ( 55, e5, 45, 45, 45, ec, 5d)
p3 : (X1,X2,X3,X4,X5,X6,X7)→ ( 53, e3, 43, 43, 43, dc, 5b)
p4 : (X1,X2,X3,X4,X5,X6,X7)→ ( 51, e1, 41, 41, 41, cc, 59)
p5 : (X1,X2,X3,X4,X5,X6,X7)→ ( 52, e2, 42, 42, 42, d4, 5a)
p6 : (X1,X2,X3,X4,X5,X6,X7)→ ( 56, e6, 46, 46, 46, f4, 5e)
p7 : (X1,X2,X3,X4,X5,X6,X7)→ ( 57, e7, 47, 47, 47, fc, 5f) }.

The prove that grammar is LL is trivial and it is left to reader. We can easily outline a process of
parsing. Firstly, the starting rule is applied, we gain the string with nonterminal on the start and this
nonterminal is X1. According to input one rule from {p2, . . . , p7} is chosen, and this rule determines
the values that have to be on next positions of all variant bytes.

6 CONCLUSION AND FUTURE WORK

We have successfully created LL(1) SCG, which is able to parse binary code and recognize the register
realignment. The disadvantage of this solution is requirement of human interaction during the code
analysis and also during creation of SCG. If we want to apply this process in malware analysis, the
whole operation has to be automatic.

The future work should cover creation of methods and algorithms for completely algorithmic solution.
This task requires a separation of code to basic blocks, what is a quite well explored area. In the
second step, the definition of list A and sets Bi is to be performed. The last challenge is building of
SCG, what is composition of two problems. The correct opcodes have to be found for each part of
each rule. The conflicts between multiple register exchanges have to be handled. This is a problem
only if the list A has more than 1 item.

Binary obfuscation knows much more techniques than register realignment. The recognition of these
other methods will be another milestone after finishing the actually raised problem.
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No. MSM 0021630528.

REFERENCES
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